Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae

نویسندگان

  • Choong-Min Ryu
  • Chia-Hui Hu
  • M. S. Reddy
  • Joseph W. Kloepper
چکیده

• The mechanisms by which plant growth-promoting rhizobacteria (PGPR) mediate induced systemic resistance are currently being intensively investigated from the viewpoint of signal transduction pathways within plants. • Here, we determined whether our well-characterized PGPR strains, which have demonstrated induced resistance on various plants, also elicit induced resistance in Arabidopsis thaliana . Nine different PGPR strains were evaluated for their capacity to cause induced resistance on Arabidopsis against two pathovars of Pseudomonas syringae. Six strains significantly reduced severity of P. syringae pv. tomato, whereas seven strains reduced severity of P. syringae pv. maculicola. • From the initial screenings, four strains (90-166, SE34, 89B61 and T4) were selected because of their consistent induced resistance capacity. Elicitation of induced resistance with these strains depended on how disease severity was measured. Three strains (90-166, 89B61 and T4) induced resistance in NahG plants (SA-deficient), indicating a salicylic acid-independent pathway, which agrees with the previously reported pathway for induced resistance by PGPR. However, differences from the reported pathway were noted with strain 89B61, which did not require jasmonic acid or ethylene signaling pathways for induced resistance, and with strain T4, which induced resistance in npr1 plants. • These results indicate that strains 89B61 and T4 induce resistance via a new pathway or possibly a variation of the previously reported pathway. This information will broaden our understanding of ways in which microorganisms can signal physiological changes in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana.

Upon appropriate stimulation, plants can develop an enhanced capacity to express infection-induced cellular defense responses, a phenomenon known as the primed state. Colonization of the roots of Arabidopsis thaliana by the beneficial rhizobacterial strain Pseudomonas fluorescens WCS417r primes the leaf tissue for enhanced pathogen- and insect-induced expression of jasmonate (JA)-responsive gen...

متن کامل

The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis.

Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to the plant hormones jasmonic acid and ethylene. In contras...

متن کامل

MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis.

Colonization of Arabidopsis thaliana roots by nonpathogenic Pseudomonas fluorescens WCS417r bacteria triggers a jasmonate/ethylene-dependent induced systemic resistance (ISR) that is effective against a broad range of pathogens. Microarray analysis revealed that the R2R3-MYB-like transcription factor gene MYB72 is specifically activated in the roots upon colonization by WCS417r. Here, we show t...

متن کامل

MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe.

Colonisation of plant roots by selected beneficial Trichoderma fungi or Pseudomonas bacteria can result in the activation of a systemic defence response that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, induced systemic resistance (ISR) triggered by the rhizobacterial strain Pseudomonas fluorescens WCS417r is regulated by a jasmonic acid- and ethylene-dependent d...

متن کامل

Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana.

The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003